Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Innate Immun ; 15(1): 468-484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36882040

RESUMEN

Complement activation and Rab GTPase trafficking are commonly observed in inflammatory responses. Recruitment of innate immune cells to sites of infection or injury and secretion of inflammatory chemokines are promoted by complement component 5a (C5a) that activates the cell surface protein C5a receptor1 (C5aR1). Persistent activation can lead to a myriad of inflammatory and autoimmune diseases. Here, we demonstrate that the mechanism of C5a induced chemotaxis of human monocyte-derived macrophages (HMDMs) and their secretion of inflammatory chemokines are controlled by Rab5a. We find that C5a activation of the G protein coupled receptor C5aR1 expressed on the surface of HMDMs, recruits ß-arrestin2 via Rab5a trafficking, then activates downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling that culminates in chemotaxis and secretion of pro-inflammatory chemokines from HMDMs. High-resolution lattice light-sheet microscopy on live cells showed that C5a activates C5aR1-GFP internalization and colocalization with Rab5a-tdTomato but not with dominant negative mutant Rab5a-S34N-tdTomato in HEK293 cells. We found that Rab5a is significantly upregulated in differentiated HMDMs and internalization of C5aR1 is dependent on Rab5a. Interestingly, while knockdown of Rab5a inhibited C5aR1-mediated Akt phosphorylation, it did not affect C5aR1-mediated ERK1/2 phosphorylation or intracellular calcium mobilization in HMDMs. Functional analysis using transwell migration and µ-slide chemotaxis assays indicated that Rab5a regulates C5a-induced chemotaxis of HMDMs. Further, C5aR1 was found to mediate interaction of Rab5a with ß-arrestin2 but not with G proteins in HMDMs. Furthermore, C5a-induced secretion of pro-inflammatory chemokines (CCL2, CCL3) from HMDMs was attenuated by Rab5a or ß-arrestin2 knockdown or by pharmacological inhibition with a C5aR1 antagonist or a PI3K inhibitor. These findings reveal a C5a-C5aR1-ß-arrestin2-Rab5a-PI3K signaling pathway that regulates chemotaxis and pro-inflammatory chemokine secretion in HMDMs and suggests new ways of selectively modulating C5a-induced inflammatory outputs.


Asunto(s)
Quimiocinas , Quimiotaxis , Macrófagos , Receptor de Anafilatoxina C5a , Proteínas de Unión al GTP rab5 , Humanos , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Complemento C5a/metabolismo , Células HEK293 , Macrófagos/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab5/metabolismo , Receptor de Anafilatoxina C5a/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(4): e2212813120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649417

RESUMEN

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1ß production. In contrast, HDAC7 initiates the pentose phosphate pathway (PPP) for NADPH and reactive oxygen species (ROS) production in response to the more proximal threat of nearby bacteria, as exemplified by studies on uropathogenic Escherichia coli (UPEC). HDAC7-mediated PPP engagement via 6-phosphogluconate dehydrogenase (6PGD) generates NADPH for antimicrobial ROS production, as well as D-ribulose-5-phosphate (RL5P) that both synergizes with ROS for UPEC killing and suppresses selective inflammatory responses. This dual functionality of the HDAC7-6PGD-RL5P axis prioritizes responses to proximal threats. Our findings thus reveal that the PPP metabolite RL5P has both antimicrobial and immunomodulatory activities and that engagement of enzymes in catabolic versus anabolic metabolic pathways triages responses to different types of danger for generation of inflammatory versus antimicrobial responses, respectively.


Asunto(s)
Antiinfecciosos , Triaje , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Antiinfecciosos/metabolismo , Vía de Pentosa Fosfato/fisiología
3.
Cell Rep ; 39(7): 110818, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584683

RESUMEN

Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation in vitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation in vitro and mouse gastrulation in vivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency. Functional perturbation with small molecules reveals that inhibition of HDAC1 and -3, but not HDAC2, induces mesoderm while impeding endoderm and early cardiac progenitor specification. These data identify unique biological functions of the structurally homologous enzymes HDAC1-3 in influencing hPSC differentiation from pluripotency toward mesendodermal and cardiac progenitor populations.


Asunto(s)
Endodermo , Histona Desacetilasas , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Endodermo/citología , Endodermo/enzimología , Endodermo/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/enzimología , Células Madre Pluripotentes/metabolismo
4.
ACS Infect Dis ; 8(1): 106-117, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34985259

RESUMEN

Malaria, caused by Plasmodium parasites, results in >400,000 deaths annually. There is no effective vaccine, and new drugs with novel modes of action are needed because of increasing parasite resistance to current antimalarials. Histone deacetylases (HDACs) are epigenetic regulatory enzymes that catalyze post-translational protein deacetylation and are promising malaria drug targets. Here, we describe quantitative structure-activity relationship models to predict the antiplasmodial activity of hydroxamate-based HDAC inhibitors. The models incorporate P. falciparum in vitro activity data for 385 compounds containing a hydroxamic acid and were subject to internal and external validation. When used to screen 22 new hydroxamate-based HDAC inhibitors for antiplasmodial activity, model A7 (external accuracy 91%) identified three hits that were subsequently verified as having potent in vitro activity against P. falciparum parasites (IC50 = 6, 71, and 84 nM), with 8 to 51-fold selectivity for P. falciparum versus human cells.


Asunto(s)
Malaria , Parásitos , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Plasmodium falciparum , Relación Estructura-Actividad Cuantitativa
5.
J Leukoc Biol ; 111(2): 327-336, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34811804

RESUMEN

TLRs reprogram macrophage metabolism, enhancing glycolysis and promoting flux through the tricarboxylic acid cycle to enable histone acetylation and inflammatory gene expression. The histone deacetylase (HDAC) family of lysine deacetylases regulates both TLR-inducible glycolysis and inflammatory responses. Here, we show that the TLR4 agonist LPS, as well as agonists of other TLRs, rapidly increase enzymatic activity of the class IIa HDAC family (HDAC4, 5, 7, 9) in both primary human and murine macrophages. This response was abrogated in murine macrophages deficient in histone deacetylase 7 (Hdac7), highlighting a selective role for this specific lysine deacetylase during immediate macrophage activation. With the exception of the TLR3 agonist polyI:C, TLR-inducible activation of Hdac7 enzymatic activity required the MyD88 adaptor protein. The rapid glycolysis response, as assessed by extracellular acidification rate, was attenuated in Hdac7-deficient mouse macrophages responding to submaximal LPS concentrations. Surprisingly however, reconstitution of these cells with either wild-type or an enzyme-dead mutant of Hdac7 enhanced LPS-inducible glycolysis, whereas only the former promoted production of the inflammatory mediators Il-1ß and Ccl2. Thus, Hdac7 enzymatic activity is required for TLR-inducible production of specific inflammatory mediators, whereas it acts in an enzyme-independent fashion to reprogram metabolism in macrophages responding to submaximal LPS concentrations. Hdac7 is thus a bifurcation point for regulated metabolism and inflammatory responses in macrophages. Taken together with existing literature, our findings support a model in which submaximal and maximal activation of macrophages via TLR4 instruct glycolysis through distinct mechanisms, leading to divergent biological responses.


Asunto(s)
Glucólisis , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Inflamación/inmunología , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Acetilación , Animales , Histona Desacetilasas/genética , Histonas , Humanos , Inflamación/patología , Interleucina-1beta/genética , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Sci Adv ; 7(49): eabg4007, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851660

RESUMEN

The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson's disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu­containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.

7.
Int J Parasitol Drugs Drug Resist ; 17: 118-127, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560571

RESUMEN

Malaria is caused by infection with Plasmodium parasites and results in significant health and economic impacts. Malaria eradication is hampered by parasite resistance to current drugs and the lack of a widely effective vaccine. Compounds that target epigenetic regulatory proteins, such as histone deacetylases (HDACs), may lead to new therapeutic agents with a different mechanism of action, thereby avoiding resistance mechanisms to current antimalarial drugs. The anticancer HDAC inhibitor AR-42, as its racemate (rac-AR-42), and 36 analogues were investigated for in vitro activity against P. falciparum. Rac-AR-42 and selected compounds were assessed for cytotoxicity against human cells, histone hyperacetylation, human HDAC1 inhibition and oral activity in a murine malaria model. Rac-AR-42 was tested for ex vivo asexual and in vitro exoerythrocytic stage activity against P. berghei murine malaria parasites. Rac-AR-42 and 13 achiral analogues were potent inhibitors of asexual intraerythrocytic stage P. falciparum 3D7 growth in vitro (IC50 5-50 nM), with four of these compounds having >50-fold selectivity for P. falciparum versus human cells (selectivity index 56-118). Rac-AR-42 induced in situ hyperacetylation of P. falciparum histone H4, consistent with PfHDAC(s) inhibition. Furthermore, rac-AR-42 potently inhibited P. berghei infected erythrocyte growth ex vivo (IC50 40 nM) and P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Oral administration of rac-AR-42 and two achiral analogues inhibited P. berghei growth in mice, with rac-AR-42 (50 mg/kg/day single dose for four days) curing all infections. These findings demonstrate curative properties for HDAC inhibitors in the oral treatment of experimental mouse malaria.


Asunto(s)
Antimaláricos , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Malaria/tratamiento farmacológico , Ratones , Plasmodium berghei , Plasmodium falciparum
8.
J Med Chem ; 64(4): 2186-2204, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33570940

RESUMEN

The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.


Asunto(s)
Benzamidas/farmacología , Bencenoacetamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Benzamidas/síntesis química , Benzamidas/metabolismo , Bencenoacetamidas/síntesis química , Bencenoacetamidas/metabolismo , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/metabolismo , Compuestos de Bifenilo/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Células THP-1
9.
Artículo en Inglés | MEDLINE | ID: mdl-33345019

RESUMEN

Important insight into ski function, and ultimately skier technique and tactics, can be gained by studying how measured ski trajectories compare to predictions based on theoretical models of ski-snow interaction mechanics. The aim of this investigation was to use a 3D kinematic data set collected on highly-skilled skiers during slalom race simulations to quantify ski motion characteristics and to compare these measures with theoretical predictions based primarily on ski geometrical characteristics. For slalom turns on moderate steepness (19°), ski edging angles reached maximum values of 65.7 ± 1.7° and 71.0 ± 1.9° for 10 and 13 m gate spacings. Turn radii reached minimum values of 3.96 ± 0.23 and 4.94 ± 0.59 m for the 10 and 13 m courses. These values were in good agreement with theoretical predictions by Howe (2001) of turn radius based on edging angle. Other results of the study support recent developments in understanding of the role which the ski shovel plays in groove formation during carving, and also point to the need for further study of how ski geometrical and physical characteristics interact to determine the ski's trajectory, particularly at low edge angles. These results have important implications for understanding the consequences that ski design can have for skier technique and tactics in competitive slalom skiing.

10.
J Med Chem ; 63(11): 5956-5971, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32383881

RESUMEN

AR-42 is an orally active inhibitor of histone deacetylases (HDACs) in clinical trials for multiple myeloma, leukemia, and lymphoma. It has few hydrogen bond donors and acceptors but is a chiral 2-arylbutyrate and potentially prone to racemization. We report achiral AR-42 analogues incorporating a cycloalkyl group linked via a quaternary carbon atom, with up to 40-fold increased potency against human class I HDACs (e.g., JT86, IC50 0.7 nM, HDAC1), 25-fold increased cytotoxicity against five human cancer cell lines, and up to 70-fold less toxicity in normal human cells. JT86 was ninefold more potent than racAR-42 in promoting accumulation of acetylated histone H4 in MM96L melanoma cells. Molecular modeling and structure-activity relationships support binding to HDAC1 with tetrahydropyran acting as a hydrophobic shield from water at the enzyme surface. Such potent inhibitors of class I HDACs may show benefits in diseases (cancers, parasitic infections, inflammatory conditions) where AR-42 is active.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Fenilbutiratos , Relación Estructura-Actividad
11.
Cell Rep ; 30(8): 2712-2728.e8, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101747

RESUMEN

Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages. Myeloid-specific Hdac7 overexpression in transgenic mice amplifies lipopolysaccharide (LPS)-inducible lactate and promotes a glycolysis-associated inflammatory signature. Conversely, pharmacological or genetic targeting of Hdac7 and other class IIa HDACs attenuates LPS-inducible glycolysis and accompanying inflammatory responses in macrophages. We show that an Hdac7-Pkm2 complex acts as an immunometabolism signaling hub, whereby Pkm2 deacetylation at lysine 433 licenses its proinflammatory functions. Disrupting this complex suppresses inflammatory responses in vitro and in vivo. Class IIa HDACs are thus pivotal intermediates connecting TLR-inducible glycolysis to inflammation via Pkm2.


Asunto(s)
Glucólisis , Histona Desacetilasas/metabolismo , Inflamación/patología , Macrófagos/enzimología , Macrófagos/patología , Piruvato Quinasa/metabolismo , Receptores Toll-Like/metabolismo , Acetilación/efectos de los fármacos , Animales , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Células RAW 264.7
12.
J Med Chem ; 63(2): 529-541, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31910011

RESUMEN

Structure-activity relationships for a series of small-molecule thiophenes resulted in potent and selective antagonism of human Complement C3a receptor. The compounds are about 100-fold more potent than the most reported antagonist SB290157. A new compound JR14a was among the most potent of the new antagonists in vitro, assessed by (a) inhibition of intracellular calcium release (IC50 10 nM) induced in human monocyte-derived macrophages by 100 nM C3a, (b) inhibition of ß-hexosaminidase secretion (IC50 8 nM) from human LAD2 mast cells degranulated by 100 nM C3a, and (c) selectivity for human C3aR over C5aR. JR14a was metabolically stable in rat plasma and in rat liver microsomes and efficacious in rats when given orally to suppress rat paw inflammation, macrophage and mast cell activation, and histopathology induced by intraplantar paw administration of a C3aR agonist. Potent C3aR antagonists are now available for interrogating C3a receptor activation and suppressing C3aR-mediated inflammation in mammalian physiology and disease.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Arginina/análogos & derivados , Compuestos de Bencidrilo/farmacología , Complemento C3a , Receptores de Complemento/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Arginina/farmacocinética , Arginina/farmacología , Compuestos de Bencidrilo/farmacocinética , Calcio/metabolismo , Hexosaminidasas/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Mastocitos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Ratas Wistar , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/farmacocinética
13.
Br J Pharmacol ; 176(19): 3775-3790, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31236923

RESUMEN

BACKGROUND AND PURPOSE: Chronic liver diseases feature excessive collagen and matrix protein deposition or crosslinking that characterises fibrosis, leads to scar tissue, and disrupts liver functions. There is no effective treatment. This study investigated whether treatment with selective histone deacetylase (HDAC) inhibitors might specifically reduce type 2 inflammation in the injured liver, thereby attenuating fibrogenesis in mice. EXPERIMENTAL APPROACH: Thioacetamide (TAA) was used to induce hepatic inflammation, fibrosis, and liver damage in female C57BL/6 mice, similar to the clinical features of chronic human liver disease. We used eight inhibitors of different human HDAC enzymes to probe histological (IHC and TUNEL), biochemical and immunological changes (flow cytometry, qPCR, Legendplex, and ELISA) in pathology, fibrosis, hepatic immune cell flux, and inflammatory cytokine expression. KEY RESULTS: Inhibitors of class I, but not class II, HDAC enzymes potently suppressed chronic hepatic inflammation and fibrosis in mice, attenuating accumulation and activation of IL-33-dependent, but not IL-25-dependent, group 2 innate lymphoid cells (ILC2) and inhibiting type 2 inflammation that drives hepatic stellate cells to secrete excessive collagen and matrix proteins. CONCLUSIONS AND IMPLICATIONS: The results show that potent and selective inhibitors of class I only HDAC enzymes profoundly inhibit hepatocyte death and type 2 inflammation to prevent TAA-induced liver fibrosis in mice. The specific HDAC enzymes identified here may be key promoters of inflammation in chronic liver fibrosis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/química , Femenino , Inhibidores de Histona Desacetilasas/química , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ligandos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Tioacetamida
14.
J Virol ; 93(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30918071

RESUMEN

HIV-1 replication requires direct interaction between HIV-1 reverse transcriptase (RT) and cellular eukaryotic translation elongation factor 1A (eEF1A). Our previous work showed that disrupting this interaction inhibited HIV-1 uncoating, reverse transcription, and replication, indicating its potential as an anti-HIV-1 target. In this study, we developed a sensitive, live-cell split-luciferase complementation assay (NanoBiT) to quantitatively measure inhibition of HIV-1 RT interaction with eEF1A. We used this to screen a small molecule library and discovered small-molecule oxazole-benzenesulfonamides (C7, C8, and C9), which dose dependently and specifically inhibited the HIV-1 RT interaction with eEF1A. These compounds directly bound to HIV-1 RT in a dose-dependent manner, as assessed by a biolayer interferometry (BLI) assay, but did not bind to eEF1A. These oxazole-benzenesulfonamides did not inhibit enzymatic activity of recombinant HIV-1 RT in a homopolymer assay but did inhibit reverse transcription and infection of both wild-type (WT) and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 in a dose-dependent manner in HEK293T cells. Infection of HeLa cells was significantly inhibited by the oxazole-benzenesulfonamides, and the antiviral activity was most potent against replication stages before 8 h postinfection. In human primary activated CD4+ T cells, C7 inhibited HIV-1 infectivity and replication up to 6 days postinfection. The data suggest a novel mechanism of HIV-1 inhibition and further elucidate how the RT-eEF1A interaction is important for HIV-1 replication. These compounds provide potential to develop a new class of anti-HIV-1 drugs to treat WT and NNRTI-resistant strains in people infected with HIV.IMPORTANCE Antiretroviral drugs protect many HIV-positive people, but their success can be compromised by drug-resistant strains. To combat these strains, the development of new classes of HIV-1 inhibitors is essential and a priority in the field. In this study, we identified small molecules that bind directly to HIV-1 reverse transcriptase (RT) and inhibit its interaction with cellular eEF1A, an interaction which we have previously identified as crucial for HIV-1 replication. These compounds inhibit intracellular HIV-1 reverse transcription and replication of WT HIV-1, as well as HIV-1 mutants that are resistant to current RT inhibitors. A novel mechanism of action involving inhibition of the HIV-1 RT-eEF1A interaction is an important finding and a potential new way to combat drug-resistant HIV-1 strains in infected people.


Asunto(s)
Transcriptasa Inversa del VIH/efectos de los fármacos , Factor 1 de Elongación Peptídica/metabolismo , Fármacos Anti-VIH/farmacología , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Células HeLa , Humanos , Oxazoles/metabolismo , Oxazoles/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Transcripción Reversa/efectos de los fármacos , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos , Bencenosulfonamidas
15.
Dis Model Mech ; 11(7)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29784888

RESUMEN

Breast cancer brain metastases remain largely incurable. Although several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immunocompromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. As seen by immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple-negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo, and potent radio-sensitising properties in vitro The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis.This article has an associated First Person interview with Soo-Hyun Kim, joint first author of the paper.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Genes Relacionados con las Neoplasias , Inhibidores de Histona Desacetilasas/uso terapéutico , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Invasividad Neoplásica , Fenotipo , Tolerancia a Radiación/efectos de los fármacos , Transducción de Señal/genética
16.
J Med Chem ; 61(8): 3253-3276, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28977749

RESUMEN

Numerous diseases are driven by chronic inflammation, placing major burdens on our health systems. Controlling inflammation is an important preventative and therapeutic goal. Over 40 "Complement" proteins are produced in blood or on cell surfaces through activation of the Complement protein network mainly by infection or injury. These proteins complement immune cells and antibodies to identify, tag, destroy, and eliminate pathogens and infected or damaged cells and repair tissues. If the inflammatory stimulus is not removed by localized acute immune responses, Complement activation may be prolonged or misdirected to healthy cells, and chronic inflammation can lead to inflammatory or autoimmune diseases. The formation, structures, and interplay between Complement proteins are complex, and this has limited our detailed understanding of their roles and importance in physiology and disease. With the availability of new structures for Complement proteins, new knowledge of how they function, and new modulators of Complement-driven signaling, there are also new opportunities to intervene in Complement-mediated disease. Small molecule and peptide-based drug leads, identified as clues for Complement-directed therapeutic development, are assembled here together with the available evidence for their efficacy in cellular and animal models of human inflammatory disease and in some human clinical conditions.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Activación de Complemento/efectos de los fármacos , Inactivadores del Complemento/uso terapéutico , Proteínas del Sistema Complemento/efectos de los fármacos , Animales , Enfermedades Autoinmunes/inmunología , Línea Celular Tumoral , Activación de Complemento/inmunología , Activación de Complemento/fisiología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/fisiología , Humanos
17.
Nat Commun ; 8(1): 351, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839129

RESUMEN

Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.


Asunto(s)
Complemento C3a/fisiología , Inmunidad Innata/genética , Receptores de Complemento/química , Animales , Antiasmáticos/farmacología , Degranulación de la Célula/efectos de los fármacos , Células Cultivadas , Complemento C3a/genética , Complemento C3a/metabolismo , Cromolin Sódico/farmacología , Humanos , Ligandos , Macrófagos/inmunología , Masculino , Mastocitos/inmunología , Neutrófilos/inmunología , Conformación Proteica , Ratas , Ratas Wistar , Receptores de Complemento/agonistas , Receptores de Complemento/antagonistas & inhibidores
18.
Bioconjug Chem ; 28(6): 1669-1676, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28562031

RESUMEN

Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluorescent ligand is more attractive due to greater longevity, stability, and safety. Here, we have chemically synthesized the 77 residue human C3a protein and conjugated its N-terminus to europium diethylenetriaminepentaacetate to produce a novel fluorescent protein (Eu-DTPA-hC3a). Time-resolved fluorescence analysis has demonstrated that Eu-DTPA-hC3a binds selectively to its cognate G protein-coupled receptor C3aR with full agonist activity and similar potency and selectivity as native C3a in inducing calcium mobilization and phosphorylation of extracellular signal-regulated kinases in HEK293 cells that stably expressed C3aR. Time-resolved fluorescence analysis for saturation and competitive binding gave a dissociation constant (Kd) of 8.7 ± 1.4 nM for Eu-DTPA-hC3a and binding affinities for hC3a (pKi of 8.6 ± 0.2 and Ki of 2.5 nM) and C3aR ligands TR16 (pKi of 6.8 ± 0.1 and Ki of 138 nM), BR103 (pKi of 6.7 ± 0.1 and Ki of 185 nM), BR111 (pKi of 6.3 ± 0.2 and Ki of 544 nM) and SB290157 (pKi of 6.3 ± 0.1 and Ki of 517 nM) via displacement of Eu-DTPA-hC3a from hC3aR. The macromolecular conjugate Eu-DTPA-hC3a is a novel nonradioactive probe suitable for studying ligand-C3aR interactions with potential value in accelerating drug development for human C3aR in physiology and disease.


Asunto(s)
Complemento C3a/química , Europio/química , Colorantes Fluorescentes/química , Receptores de Complemento/análisis , Señalización del Calcio , Línea Celular , Humanos , Ligandos , Fosforilación , Unión Proteica , Receptores de Complemento/metabolismo
19.
Nat Commun ; 8: 14599, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272391

RESUMEN

Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3-500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.


Asunto(s)
Activación de Linfocitos/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Membrana Mucosa/citología , Bases de Schiff/química , Uracilo/análogos & derivados , Animales , Antígenos/química , Antígenos/inmunología , Glucólisis , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Enlace de Hidrógeno , Interferón gamma/genética , Células Jurkat , Masculino , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Replegamiento Proteico , Factor de Necrosis Tumoral alfa/genética , Uracilo/química , Uracilo/farmacología
20.
Int J Parasitol Drugs Drug Resist ; 7(1): 51-60, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28110187

RESUMEN

Histone deacetylase inhibitors (HDACi) are being investigated for the control of various human parasites. Here we investigate their potential as insecticides for the control of a major ecto-parasite of sheep, the Australian sheep blowfly, Lucilia cuprina. We assessed the ability of HDACi from various chemical classes to inhibit the development of blowfly larvae in vitro, and to inhibit HDAC activity in nuclear protein extracts prepared from blowfly eggs. The HDACi prodrug romidepsin, a cyclic depsipeptide that forms a thiolate, was the most potent inhibitor of larval growth, with equivalent or greater potency than three commercial blowfly insecticides. Other HDACi with potent activity were hydroxamic acids (trichostatin, CUDC-907, AR-42), a thioester (KD5170), a disulphide (Psammaplin A), and a cyclic tetrapeptide bearing a ketone (apicidin). On the other hand, no insecticidal activity was observed for certain other hydroxamic acids, fatty acids, and the sesquiterpene lactone parthenolide. The structural diversity of the 31 hydroxamic acids examined here revealed some structural requirements for insecticidal activity; for example, among compounds with flexible linear zinc-binding extensions, greater potency was observed in the presence of branched capping groups that likely make multiple interactions with the blowfly HDAC enzymes. The insecticidal activity correlated with inhibition of HDAC activity in blowfly nuclear protein extracts, indicating that the toxicity was most likely due to inhibition of HDAC enzymes in the blowfly larvae. The inhibitor potencies against blowfly larvae are different from inhibition of human HDACs, suggesting some selectivity for human over blowfly HDACs, and a potential for developing compounds with the inverse selectivity. In summary, these novel findings support blowfly HDAC enzymes as new targets for blowfly control, and point to development of HDAC inhibitors as a promising new class of insecticides.


Asunto(s)
Dípteros/efectos de los fármacos , Dípteros/enzimología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Insecticidas/farmacología , Animales , Australia , Depsipéptidos/farmacología , Dípteros/crecimiento & desarrollo , Concentración 50 Inhibidora , Resistencia a los Insecticidas , Insecticidas/química , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Oveja Doméstica/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...